Building Encrypted Images for Confidential Computing

With both Intel and AMD announcing confidential computing features to run encrypted virtual machines, IBM research has been looking into a new format for encrypted VM images. The first question is why a new format, after all qcow2 only recently deprecated its old encrypted image format in favour of luks. The problem is that in confidential computing, the guest VM runs inside the secure envelope but the host hypervisor (including the QEMU process) is untrusted and thus runs outside the secure envelope and, unfortunately, even for the new luks format, the encryption of the image is handled by QEMU and so the encryption key would be outside the secure envelope. Thus, a new format is needed to keep the encryption key (and, indeed, the encryption mechanism) within the guest VM itself. Fortunately, encrypted boot of Linux systems has been around for a while, and this can be used as a practical template for constructing a fully confidential encrypted image format and maintaining that confidentiality within a hostile cloud environment. In this article, I’ll explore the state of the art in encrypted boot, constructing EFI encrypted boot images, and finally, in the follow on article, look at deploying an encrypted image into a confidential environment and maintaining key secrecy in the cloud.

Encrypted Boot State of the Art

Luks and the cryptsetup toolkit have been around for a while and recently (in 2018), the luks format was updated to version 2. However, actually booting a linux kernel from an encrypted partition has always been a bit of a systems problem, primarily because the bootloader (grub) must decrypt the partition to actually load the kernel. Fortunately, grub can do this, but unfortunately the current grub in most distributions (2.04) can only read the version 1 luks format. Secondly, the user must type the decryption passphrase into grub (so it can pull the kernel and initial ramdisk out of the encrypted partition to boot them), but grub currently has no mechanism to pass it on to the initial ramdisk for mounting root, meaning that either the user has to type their passphrase twice (annoying) or the initial ramdisk itself has to contain a file with the disk passphrase. This latter is the most commonly used approach and only has minor security implications when the system is in motion (the ramdisk and the key file must be root read only) and the password is protected at rest by the fact that the initial ramdisk is also on the encrypted volume. Even more annoying is the fact that there is no distribution standard way of creating the initial ramdisk. Debian (and Ubuntu) have the most comprehensive documentation on how to do this, so the next section will look at the much less well documented systemd/dracut mechanism.

Encrypted Boot for Systemd/Dracut

Part of the problem here seems to be less that stellar systems co-ordination between the two components. Additionally, the way systemd supports passphraseless encrypted volumes has been evolving for a while but changed again in v246 to mirror the Debian method. Since cloud images are usually pretty up to date, I’ll describe this new way. Each encrypted volume is referred to by UUID (which will be the UUID of the containing partition returned by blkid). To get dracut to boot from an encrypted partition, you must pass in


but you must also have a key file named


And, since dracut hasn’t yet caught up with this, you usually need a cryptodisk.conf file in /etc/dracut.conf.d/ which contains

install_items+=" /etc/cryptsetup-keys.d/* "

Grub and EFI Booting Encrypted Images

Traditionally grub is actually installed into the disk master boot record, but for EFI boot that changed and the disk (or VM image) must have an EFI System partition which is where the grub.efi binary is installed. Part of the job of the grub.efi binary is to find the root partition and source the /boot/grub1/grub.cfg. When you install grub on an EFI partition a search for the root by UUID is actually embedded into the grub binary. Another problem is likely that your distribution customizes the location of grub and updates the boot variables to tell the system where it is. However, a cloud image can’t rely on the boot variables and must be installed in the default location (\EFI\BOOT\bootx64.efi). This default location can be achieved by adding the –removable flag to grub-install.

For encrypted boot, this becomes harder because the grub in the EFI partition must set up the cryptographic location by UUID. However, if you add


To /etc/default/grub it will do the necessary in grub-install and grub-mkconfig. Note that on Fedora, where every other GRUB_ENABLE parameter is true/false, this must be ‘y’, unfortunately grub-install will look for =y not =true.

Putting it all together: Encrypted VM Images

Start by extracting the root of an existing VM image to a tar file. Make sure it has all the tools you will need, like cryptodisk and grub-efi. Create a two partition raw image file and loopback mount it (I usually like 4GB) with a small efi partition (p1) and an encrypted root (p2):

truncate -s 4GB disk.img
parted disk.img mklabel gpt
parted disk.img mkpart primary 1Mib 100Mib
parted disk.img mkpart primary 100Mib 100%
parted disk.img set 1 esp on
parted disk.img set 1 boot on

Now setup the efi and cryptosystem (I use ext4, but it’s not required). Note at this time luks will require a password. Use a simple one and change it later. Also note that most encrypted boot documents advise filling the encrypted partition with random numbers. I don’t do this because the additional security afforded is small compared with the advantage of converting the raw image to a smaller qcow2 one.

losetup -P -f disk.img          # assuming here it uses loop0
l=($(losetup -l|grep disk.img)) # verify with losetup -l
mkfs.vfat ${l}p1
blkid ${l}p1       # remember the EFI partition UUID
cryptsetup --type luks1 luksFormat ${l}p2 # choose temp password
blkid ${l}p2       # remember this as <UUID> you'll need it later 
cryptsetup luksOpen ${l}p2 cr_root
mkfs.ext4 /dev/mapper/cr_root
mount /dev/mapper/cr_root /mnt
tar -C /mnt -xpf <vm root tar file>
for m in run sys proc dev; do mount --bind /$m /mnt/$m; done
chroot /mnt

Create or modify /etc/fstab to have root as /dev/disk/cr_root and the EFI partition by label under /boot/efi. Now set up grub for encrypted boot2

echo "GRUB_ENABLE_CRYPTODISK=y" >> /etc/default/grub
mount /boot/efi
grub-install --removable --target=x86_64-efi
grub-mkconfig -o /boot/grub/grub.cfg

For Debian, you’ll need to add an /etc/crypttab entry for the encrypted disk:

cr_root UUID=<uuid> luks none

And then re-create the initial ramdisk. For dracut systems, you’ll have to modify /etc/default/grub so the GRUB_CMDLINE_LINUX has a rd.luks.uuid=<UUID> entry. If this is a selinux based distribution, you may also have to trigger a relabel.

Now would also be a good time to make sure you have a root password you know or to install /root/.ssh/authorized_keys. You should unmount all the binds and /mnt and try EFI booting the image. You’ll still have to type the password a couple of times, but once the image boots you’re operating inside the encrypted envelope. All that remains is to create a fast boot high entropy low iteration password and replace the existing one with it and set the initial ramdisk to use it. This example assumes your image is mounted as SCSI disk sda, but it may be a virtual disk or some other device.

dd if=/dev/urandom bs=1 count=33|base64 -w 0 > /etc/cryptsetup-keys.d/luks-<UUID>.key
chmod 600 /etc/cryptsetup-keys.d/luks-<UUID>.key
cryptsetup --key-slot 1 luksAddKey /dev/sda2 # permanent recovery key
cryptsetup --key-slot 0 luksRemoveKey /dev/sda2 # remove temporary
cryptsetup --key-slot 0 --iter-time 1 luksAddKey /dev/sda2 /etc/cryptsetup-keys.d/luks-<UUID>.key

Note the “-w 0” is necessary to prevent the password from having a trailing newline which will make it difficult to use. For mkinitramfs systems, you’ll now need to modify the /etc/crypttab entry

cr_root UUID=<UUID> /etc/cryptsetup-keys.d/luks-<UUID>.key luks

For dracut you need the key install hook in /etc/dracut.conf.d as described above and for Debian you need the keyfile pattern:

echo "KEYFILE_PATTERN=\"/etc/cryptsetup-keys.d/*\"" >>/etc/cryptsetup-initramfs/conf-hook

You now rebuild the initial ramdisk and you should now be able to boot the cryptosystem using either the high entropy password or your rescue one and it should only prompt in grub and shouldn’t prompt again. This image file is now ready to be used for confidential computing.

  1. some distributions actually use /boot/grub2 instead of /boot/grub.
  2. On some distributions the grub commands may have a prefix grub2- instead of grub-

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.