A few of you who’ve met me know that my current Android phone is an ancient Nexus One. I like it partly because of the small form factor, partly because I’ve re-engineered pieces of the CyanogneMod OS it runs to suit me and can’t be bothered to keep upporting to newer versions and partly because it annoys a lot of people in the Open Source Community who believe everyone should always be using the latest greatest everything. Actually, the last reason is why, although the Nexus One I currently run is the original google gave me way back in 2010, various people have donated a stack of them to me just in case I might need a replacement.
However, the principle problem with running one of these ancient beasts is that they cannot, due to various flash sizing problems, run anything later than Android 2.3.7 (or CyanogenMod 7.1.0) and since the OpenSSL in that is ancient, it won’t run any TLS protocol beyond 1.0 so with the rush to move to encryption and secure the web, more and more websites are disallowing the old (and, lets admit it, buggy) TLS 1.0 protocol, meaning more and more of the web is steadily going dark to my mobile browser. It’s reached the point where simply to get a boarding card, I have to download the web page from my desktop and transfer it manually to the phone. This started as an annoyance, but it’s becoming a major headache as the last of the websites I still use for mobile service go dark to me. So the task I set myself is to fix this by adding the newer protocols to my phone … I’m an open source developer, I have the source code, it should be easy, right …?
First Problem, the source code and Build Environment
Ten years ago, I did build CyanogenMod from scratch and install it on my phone, what could be so hard about reviving the build environment today. Firstly there was finding it, but github still has a copy and the AOSP project it links to still keeps old versions, so simply doing a
curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
repo init -u -u git://github.com/CyanogenMod/android.git -b gingerbread --repo-url=git://github.com/android/tools_repo.git
repo sync
Actually worked (of course it took days of googling to remember these basic commands). However the “brunch passion” command to actually build it crashed and burned somewhat spectacularly. Apparently the build environment has moved on in the last decade.
The first problem is that most of the prebuilt x86 binaries are 32 bit. This means you have to build the host for 32 bit, and that involves quite a quest on an x86_64 system to make sure you have all the 32 bit build precursors. The next problem is that java 1.6.0 is required, but fortunately openSUSE build service still has it. Finally, the big problem is a load of c++ compile issues which turn out to be due to the fact that the c++ standard has moved on over the years and gcc-7 tries the latest one. Fortunately this can be fixed with
export HOST_GLOBAL_CPPFLAGS=-std=gnu++98
And the build works. If you’re only building the OpenSSL support infrastructure, you don’t need to build the entire thing, but figuring out the pieces you do need is hard, so building everything is a good way to finesse the dependency problem.
Figuring Out how to Upgrade OpenSSL
Unfortunately, this is Android, so you can’t simply drop a new OpenSSL library into the system and have it work. Firstly, the version of OpenSSL that Android builds with (at least for 2.3.7) is heavily modified, so even an android build of vanilla OpenSSL won’t work because it doesn’t have the necessary patches. Secondly, OpenSSL is very prone to ABI breaks, so if you start with 0.9.8, for instance, you’re never going to be able to support TLS 1.2. Fortunately, Android 2.3.7 has OpenSSL 1.0.0a so it is in the 1.0.0 ABI and versions of openssl for that ABI do support later versions of TLS (but only in version 1.0.1 and beyond). The solution actually is to look at external/openssl and simply update it to the latest version the project has (for CyanogenMod this is cm-10.1.2 which is openssl 1.0.1c … still rather ancient but at least supporting TLS 1.2).
cd external/openssl
git checkout cm-10.1.2
mm
And it builds and even works when installed on the phone … great. Except that nothing can use the later ciphers because the java provider (JSSE) also needs updating to support them. Updating the JSSE provider is a bit of a pain but you can do it in two patches:
Once this is done and installed you can browse most websites. There are still some exceptions because of websites that have caught the “can’t use sha1 in any form” bug, but these are comparatively minor. The two patches apply to libcore and once you have them, you can rebuild and install it.
Safely Installing the updated files
Installing new files in android can be a bit of a pain. The ideal way would be to build the entire rom and reflash, but that’s a huge pain, so the simple way is simply to open the /system partition and dump the files in. Opening the system partition is easy, just do
adb shell
# mount -o remount,rw /system
Uploading the required files is more difficult primarily because you want to make sure you can recover if there’s a mistake. I do this by transferring the files to <file>.new:
adb push out/target/product/passion/system/lib/libcrypto.so /system/lib/libcrypto.so.new
adb push out/target/product/passion/system/lib/libssl.so /system/lib/libssl.so.new
adb push out/target/product/passion/system/framework/core.jar /system/framework/core.jar.new
Now move everything into place and reboot
adb shell
# mv /system/lib/libcrypto.so /system/lib/libcrypto.so.old && mv /system/lib/libcrtypto.so.new /system/lib/libcrypto.so
# mv /system/lib/libssl.so /system/lib/libssl.so.old && mv /system/lib/libssl.so.new /system/lib/libssl.so
# mv /system/framework/core.jar /system/framework/core.jar.old && mv /system/framework/core.jar.new /system/framework/core.jar
If the reboot fails, use adb to recover
adb shell
# mount /system
# mv /system/lib/libcrypto.so.old /system/lib/libcrypto.so
...
Conclusions
That’s it. Following the steps above, my Nexus One can now browse useful internet sites like my Airline and the New York times. The only website I’m still having trouble with is the Wall Street Journal because they disabled all ciphers depending on sha1
Why not buy a Pixel (1) and install RattlesnakeOS on it? You get the latest and greatest in security fixes, a much faster phone with better hardware, way more storage. It’s also really easy to build it with the RattlesnakeOS stack.
picture, please.
Great Work.
I’m trying the same with a Samsung Galaxy Ace. But I am new to Android compiling.
Why is the limitation to SHA1? Does it has to do with OpenSSL or Java or CPU or else?
Would like to read more like your great HOWTO. But most sites regarding Android and TLSv1.2 is about App-development and integrating some Code.
The sha1 problem seems to have to do with the fact that the java code wrapping the updated openssl doesn’t have a representation for the non-sha1 hashes (the code was old before android adopted it and they replaced it in later AOSP versions). If the cipher negotiates internally, you can use sha256 based ciphers, but if something asks the java code to list the ciphers they won’t be present