
CTO, Server Virtualization; SCSI Subsystem, Parisc Kernel Maintainer

James Bottomley

31 January 2013

UEFI Secure Boot
Where we stand

2 2

About Me

• FAQ
• Or more properly, (FGA) Frequently Given Answers

– I'm kernel maintainer of SCSI and PA-RISC
> So I'm into crazy and obsolete systems

– My day job is as CTO of Server Virtualisation for Parallels

– I only got into Secure Boot because everyone moved faster
than I did when the crap was landing

– I began wearing Bow Ties way before Doctor Who made it
cool

3 3

Introduction

• UEFI Secure boot is a static way of assigning trust to
the boot system

• It is mandated by Microsoft to be enabled in all
shipping Windows 8 systems

• The Microsoft Mandate requires all keys to be owned
either by the OEM or by Microsoft

• Secure Boot must be capable of being Disabled and
the keys replaced

• But no standard mechanism for doing this exists

4 4

The Secure Boot Keys

• There are three sets of keys
– The Platform Key (PK) , designed to be owned by the owner

of the hardware
> Microsoft mandates that this belong to the OEM

– The Key Exchange Keys (KEK) designed to be owned by
trusted entities for boot

> Microsoft mandates they own at least one of these

– The Signature Database (db) designed to verify trusted
binaries

> Microsoft mandates they have a key here too.

> db signatures are required to boot in a trusted environment

5 5

How it Works

• PK may only be used to
update KEK

– So the PK owner decides
> what keys to trust in the key

> When to be in Setup Mode

• KEK may only be used to
update db

– So all owners of KEKs can
update or revoke db keys

• db keys must be used to
sign binaries which are
trusted by the system. Diagram from Microsoft

6 6

How Microsoft Mandates that it Work

• The Windows 8 Logo Requirements are
– OEM controls Owner Key

– Microsoft owns keys in KEK and db
> Several keys, in fact: it looks like Windows boot will be signed by a

separate root of trust from the third party signing system

– On non-ARM systems, secure boot must be disabled via a
UEFI menu

> No mandate for where this is or how easy it is to do.

– On non-ARM systems, the user must be able to replace all the
keys

» Again, no requirement for key administration

» OEM can comply by simply having the system remove all the keys

7 7

GPLv3 and Secure Boot
• People think GPLv3 requires disclosure of signing
keys in a lock down environment

• The Linux Foundation saw this problem in the early
drafts of the Microsoft Windows 8 Logo docs and
sought to fix it

• However requirement is only that the user be able to
boot their own system

• Ejecting the preset keys and installing your own, with
which you can then sign your system is sufficient

• Implies reset to setup mode in UEFI interface, as
Mandated by Microsoft, satisfies GPLv3 obligation

• FSF Supports this interpretation

8 8

The Threat

• Since Microsoft owns all the Signing keys, no Linux
boot system will work out of the box without their
approval

• Approval requires not booting malware and obeying
the Windows 8 logo mandates.

– Implies simply getting Microsoft to sign a Linux bootloader isn't
an option

• Linux won't boot on Windows 8 systems (i.e. all
current PC systems) without a Microsoft approved
method of booting

– Trying to explain to users how to disable secure boot isn't an
option

– Because of the non-standard mechanisms for doing so.

9 9

The Opportunity

• Secure boot gives users a way of protecting their
systems from external intrusion

• Supporting it end to end would facilitate Linux playing
in secure environments

• To be effective, must carry the root of trust through the
secure boot to the Operating System environment

– May require other trust implementations like signed modules

– Or disallowing root access to PCI configuration space

10 10

The Linux Response

• Two Challenges
1. Keep the Ecosystem booting easily in the face of secure boot

2. Enhance Security policy for distributions by taking advantage
of secure boot.

• The Linux Foundation response has concentrated
exclusively on 1.

• The Linux Distributions are Investigating and preparing
for 2.

• Red Hat and Canonical already shipping Secure Boot
in some form

11 11

Original LF Plans

• Develop a set of tools to enable owner to easily take
control of the system and manage the keys

– Allows ejecting of OEM and Microsoft keys and installing your
own

• Tools also permit the creation of signed binaries to
reset the platform to setup mode

– Just in case something goes wrong with UEFI interface

• A signed pre-bootloader that will boot any unsigned
bootloader with a present user test

– And will install bootloader signature in setup mode to avoid the
present user test

12 12

What the Distributions are Doing

• Red Hat (Matthew Garrett) interacted with UEFI forum
and OEMs to create the Shim bootloader

– Boots a signed second stage loader, which boots a signed
kernel

– Kernel is locked down by module signing and other measures

• SUSE has Machine Owner Key (MOK) approach
– Shim modified to accept key updates from present user

– Means user can resign the boot loader and install their own
key

• Both approaches require signing shim with the
microsoft key

13 13

SHIM + MOK Solutions
• MOK means Machine Owner Key

– Stored in a new MokList variable which is NV+BS

• Matthew Garrett adding ability to store hashes in MOK
database

– Means shim + MOK can now chain unsigned bootloaders

– Unsigned bootloaders can be authorised on the fly using the
MOK solution

• Shim runs an EFI binary if the key or hash is
– in db (allowed signatures) or MokList

– And not in dbx (forbidden signatures)

• SHIM solutions only work with legacy link loaders, like
Grub and efiboot

14 14

Architectural Problems
• All current secure boot workarounds overcome the
UEFI signature check by linking and running UEFI
binaries themselves

– Means they are essentially link loaders themselves

• Unfortunately, this means they won't work with the
new generation of Bootloaders like gummiboot.

– Rely on kernel EFI stubs and use BS->LoadImage()

• Discovery of this problem lead to a complete re-
architecture of the LF secure boot solution in
November/December

• Plus UEFI redefined authorisation returns.
– EFI_ACCESS_DENIED and EFI_SECURITY_VIOLATION

15 15

A New Architecture for Secure Boot

• Instead of building a Link Loader, Build a plug in for
the UEFI Security Architecture

– Documented in the Platform Initialization Specification
> DXE Security Architectural Protocols

> EFI_SECURITY_ARCH_PROTOCOL (PI1.1)

> EFI_SECURITY2_ARCH_PROTOCOL (PI 1.2)

• A resident program can replace these protocols and
do its own authorisation of binaries for the platform

• Redesign Pre-Loader to do this
– However, cannot do present user tests from this hook, must

have MOK like system instead

16 16

A look at the New Architecture

• Pre-Loader now installs a simple hook which
– Intercepts both security arch protocols (if they exist)

– Chains the call to the previous protocol
– If that succeeds, return EFI_SUCCESS

– If that fails, look up the binary hash in the MokList variable

– Authorise only if hash is present in MokList and not dbx

• Because Pre-Loader is resident, the intercepted
security architecture remains in-place for all future
users of BS->LoadImage

– i.e. GummiBoot now works (with a couple of patches)

17 17

Ancillary Programs

• Pre-Loader is no longer interactive
– At least not when it is the resident authentication system

• Need a HashTool to enrol the hash of binaries to be
booted

• Also need a KeyTool to help display, save and
manipulate the contents of the Authenticated variables

• Pre-Loader now starts HashTool to enrol the hash of
loader.efi into the MOK database (MokList)

18 18

Security Auditing the LF system

• Because it relies on Hashes not X509 keys, there are
no hidden secrets

– Means all elements of the system can be externally verified

• Signed system is built using the openSUSE build
service

– This makes all elements of the build completely verifiable

– Even after Microsoft has signed them.

• Only pre-authorised (by hash) binaries are HashTool
and KeyTool from the same build.

19 19

Interactions with Microsoft

• KeyTool discovered flaws in shipping UEFI
implementations

– Could be used to delete the Platform Key on several systems
without knowing the currently installed key

– MS insisted on rewrites to make this impossible

• Other flaws were discovered (traversing multiple keys
with the same signature header was wrong)

• Authorisation takes about a week or two.
• Finally fixed bootloader was submitted on 21 Jan

– So hopefully a signed one should be with us any day now

20 20

Demo

• Resources:
– https://build.opensuse.org/project/show?project=home%3Aj

ejb1%3AUEFI
– http://git.kernel.org/?p=linux/kernel/git/jejb/efitools.git;a=summ

ary
• Includes tianocore qemu image for UEFI plus tools for
taking control of system and building keys and
signature lists.

https://build.opensuse.org/project/show?project=home%3Ajejb1%3AUEFI
https://build.opensuse.org/project/show?project=home%3Ajejb1%3AUEFI
http://git.kernel.org/?p=linux/kernel/git/jejb/efitools.git;a=summary
http://git.kernel.org/?p=linux/kernel/git/jejb/efitools.git;a=summary

Questions?

 jbottomley@parallels.com
James.Bottomley@HansenPartnership.com

mailto:jbottomley@parallels.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

